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An exact solution is obtained of the problem of determining all the macroscopic elastic constants of an anisotropic textured 
polyc~ystalline system comprising grains with cubic symmetry of the elastic properties and a discrete distribution of those properties 
in two equivalent orientations, differing by a rotation about the four~h-order axis through an angle of~4. © 1999 Elsevier Science 
Ltd. All rights reserved. 

Exact solutions have been obtained of the problem of finding the effective moduli of elasticity of micro- 
inhomogeneous materials only for media comprising orthotropic layers which are arbitrarily 
distributed over the thickness [1, 2] and for composites of isotropic phases with identical shear moduli 
[3]. In the latter case the singularities of the spatial distribution of the phases play no part and the material 
remains macroscopically isotropic. Further analysis shows that an exact solution can also be obtained 
in the special case of an anisotropic micro-inhomogeneous medium consisting of grains of cubic symmetry 
with two ideal orientations, which change from one to the other on rotation through an angle of n/4 
about the common axis of symmetry. 

The elastic behaviour of micro-inhomogeneous materials is described by the generalized Hooke's 
law, which gives the relation between the strain and stress tensors e and o 

¢ffisO, offic~ (1) 

where s and c are the tensors of the compliances and moduli of elasticity at any point of the medium. 
Since the elements of inhomogeneity are so small and are randomly distributed, the micro- 

inhomogeneous medium can be regarded as macroscopically uniform and characterized by a set of 
effective compliances s* and effective moduli of elasticity c*, which relate the characteristics of the strain 
and stress fields averaged over the volume of the system 

(0 = s*(o), (o) = e* 0 (2) 

Averaging in (1) and comparing with (2), we obtain 

s*(o) =  so) 

After identity transformations we have 

s*(o) = (sXo) + (3) 

We take as the micro-inhomogeneous medium a polycrystal with cubic symmetry in which the grains 
have only two ideal orientations of equal relative volume concentration and an angle of disorientation 
about the common fourth-order axis of symmetry of n/4. The axis of symmetry of the system coincides 
with the x3 axis of the laboratory system of coordinates. Then the matrices of the compliances of grains 
of the first and second orientations in the laboratory system have the form 
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sl = 0 
s; 
812 

|S12 SI2 Sll 

s2 = 0 

Si2 
S12 S 2 _-- 

S~ = diag 1 ~ ,  s~,  s44}, 

= sl i - s l 2 - s , d 2  

(0  is the 3 x 3 zero matrix). 

s,2+ 12 si21 
s,2+U2 sj,- /2 s,2] 
S12 S12 Sli | 

S~ = diag Is~,s~, s~ + 2;} 

The matrix of mean values of the compliances takes the form 

I Sll - ~ / 4  Sl2 + ~ / 4  si2 

S l = p t 2 + ~ / 4  s11-~14 sl2 , S2 =diag{s44,s44,s44+~} 

BsI2 812 Sll 

This polycrystalline system has an axis of symmetry of order eight, which is also the axis of elastic 
symmetry of infinite order [4], and so the material is transversely isotropic [5]. From the condition for 
transverse isotropicity of the system it follows that 

a~s= 2 (S~r-~2) (4) 

Considering the different stressed states of the system, namely, the macroscopic stressed states 
corresponding to extension along the xl and x3 axes, simple shear in the x2, x3 planes as well as uniform 
compression, from Eq. (3) and the form of the matrices s I, s 2 and (s) we obtain 

sh=s,2, sh=s., sh=s. ,  s ,+sh=sll+sl  (5) 
From (4) and (5) it follows that all the effective compliances can be found merely by finding the 

coefficient s'66. We do this by considering two stressed states of simple shear 

li °  °'il i i  il (0)= J2) 0 a n d ( o ) =  (012) 

0 0 

((o") is obtained by rotating the stress field (0) through an angle of ~/4 about the x3 axis of the laboratory 
system). 

By virtue of the symmetry of the system, a rotation of the stress field is equivalent to the interchange 
of the mean stresses in grains of different orientations, that is 

(0 "), = (0)2, (0 ")2 --- (/~)* (6) 

where (o)i and (~'), are the tensors of the mean stress over the volume occupied by grains of the ith 
orientation. 

There are similar relations for the mean strains 

The relation between <~' and ~' at an arbitrary point of the system is also given by the generalized 
Hooke's law 

~' = so', o ' = ~ '  (8) 

The tensors of the compliances and moduli of elasticity at an arbitrary point of the systemcan be 
written in the form 
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s = ~ss--s 2) + s 2, c=- ~el--c 2) + e 2 (9) 

where cl, cz are the tensors of the moduli of elasticity of the corresponding orientations, and ~, is a random 
indicator function, which is equal to one when the point belongs to grains of the first orientation and 
zero otherwise. 

Substituting expressions (9) for the compliance tensor and moduli of elasticity tensor into relation 
(8) and averaging using (6) and (7), we obtain 

(cO = (d(~h+ ta(~)l)/2, (g) = (st(oh+ s2(oh)/2 

It follows from the invariance of the rotation that (~') and (e') relate the same tensor s* of effective 
compliances. Then 

sl(O')2+ s~O')l = s'(cl(~h+ c~)l) (10) 

where (e)x = sl(ts)l, (e)2 = s2(o)2 and Eq. (10) can be rewritten (in coordinate form) as 

The mean shear stresses over the volumes occupied by the separate orientations occurring here are 
found by averaging in (1) over the whole volume of the polycrystalline specimen using (9). We obtain 

A similar expression is obtained for (OlZ)2 by permuting the indices of the various orientations of the 
grains. 

Substituting the resulting quantities into (11) we obtain 

Solving the resulting quadratic equation, we have 

e~ = [e44(e~l - ct2)/2] y~ 

that is, the macroscopic shear modulus in a plane perpendicular to the isotropic plane and in a direction 
lying in the isotropic plane is found as the geometric mean of the shear moduli in the plane of the face 
and the diagonal plane of  the elementary cubic crystal lattice. 

The remaining macroscopic compliances are given by Eqs (4) and (5). Finally, for the moduli of 
elasticity, we obtain 

e;,=,:., ,:;3=,:,2, e:,=c,, 
This solution holds whatever the shape of the grains, provided the elastic symmetry of the material 

is preserved. In particular, it holds for a two-dimensional polycrystalline system with a "honeycomb" 
structure in which the grains are infinite hexagonal prisms. 
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